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Abstract 

Tropical forests are estimated to release approximately 1.7 PgC per year as a result of 

deforestation. Avoiding tropical deforestation could potentially play a significant role in 

carbon mitigation over the next 50 years if not longer. Many policymakers and 

negotiators are skeptical of our ability to reduce deforestation effectively. They fear that 

if credits for avoided deforestation are allowed to replace fossil fuel emission reductions 

for compliance with Kyoto, the environment will suffer because the credits will not 

reflect truly additional carbon storage. This paper considers the nature of the uncertainties 

involved in estimating carbon stocks and predicting deforestation. We build an 

empirically based stochastic model that combines data from field ecology, geographical 

information system (GIS) data from satellite imagery, economic analysis and ecological 

process modeling to simulate the effects of these uncertainties on the environmental 

integrity of credits for avoided deforestation. We find that land use change, and hence 

additionality of carbon, is extremely hard to predict accurately and errors in the numbers 

of credits given for avoiding deforestation are likely to be very large. We also find that 

errors in estimation of carbon storage could be large and could have significant impacts. 

We find that in Costa Rica, nearly 42% of all the loss of environmental integrity that 

would arise from poor carbon estimates arises in one life zone, Tropical Wet. This 

suggests that research effort might be focused in this life zone. 
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1 INTRODUCTION 

Tropical forests are estimated to release approximately 1.7 PgC per year as a 

result of deforestation. In contrast, global fossil fuel emissions are around 6.4 PgC 

(Schimel et al, 2001). Tropical forests have a significant impact on atmospheric CO2 

concentrations and, with appropriate policies that aim to reduce deforestation and 

encourage reforestation, they could be used to retain or sequester a significant amount of 

carbon. Niles and Schwarze (2000) and the IPCC (Brown et al, 1996) suggest 

respectively that 0.16 and 0.28 PgC per year could be saved through prevention of 

tropical deforestation. Each of these assessments assumes that tropical deforestation 

could be reduced by around 15%. The IPCC Third Assessment Report (Kauppi and 

Sedjo, 2001) confirmed the Second Assessment Report (Brown et al, 1996) by estimating 

that biological mitigation as a whole (afforestation, reforestation, preventing 

deforestation, and forest management) could offset 12–15% of all business-as-usual fossil 

fuel emissions from 2000–2050. To put this in context, under the Kyoto Protocol, Annex 

I countries face limits on their emissions that are estimated to reduce global greenhouse 

gas emissions in 2010, relative to what they would have been, by around 0.29 PgC 

equivalent per year, or 5.3 % of global emissions.1 Thus, avoiding tropical deforestation 

could potentially play a significant role in carbon mitigation over the next 50 years if not 

longer.  

Even if avoiding deforestation is actually able to deliver much smaller gains and we 

progressively tighten climate mitigation targets so that avoiding deforestation is a much 

                                                 
1 2010—MIT EPPA model v3 Reference Case compared to Bonn Agreement forever case. Results 
provided by Mustafa Babiker. If the US achieves its Kyoto target as well, reductions would be 7.6%. 
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smaller part of aggregate reductions, these are real contributions to climate mitigation. As 

in most problems, the long-run solution to the climate problem is probably many small 

solutions rather than one grand one. In addition, if we prevent some deforestation we will 

reap many side benefits. We will reduce biodiversity loss and soil erosion, and help 

preserve indigenous culture.  

The big question is whether the gains from avoiding deforestation really can be 

achieved. Many policymakers and negotiators are skeptical of our ability to reduce 

deforestation effectively. They fear that if credits for avoided deforestation are allowed to 

replace fossil fuel emission reductions for compliance with Kyoto, the environment will 

suffer because the credits will not reflect truly additional carbon storage. If the credits 

given exceed the true additional carbon and the credits are sold and used to meet Kyoto 

commitments instead of emissions reductions, a real rise in global emissions will occur 

relative to the Kyoto target. 

Policymakers’ and negotiators’ fear stems largely from concerns about our ability to 

estimate carbon stocks and assess the additionality of net emission reductions from 

avoided deforestation activities. They fear that many avoided deforestation credits would 

be claimed for forest that would have been protected anyway.  

This paper considers the nature of the uncertainties involved in estimating carbon 

stocks and predicting deforestation and simulates the effects of these uncertainties on the 

environmental integrity of credits for avoided deforestation. To our knowledge, this 

analysis has not previously been attempted.  

To create policies with environmental integrity that allow these credits to be traded 
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with emission reductions we require two things: a projection of how much forest there 

would have been without a policy (a forest “baseline”; see Pfaff (2004) for further 

discussion), and an estimate of the carbon stocks in the forests that are projected to be 

cleared. Each of these involves uncertainty.  

We do not explicitly consider another form of uncertainty inherent to all biological 

mitigation—lack of permanence. We avoid the problem that forest protection can be 

temporary by calculating credits based on the actual level of forest each year. If the level 

of additional carbon falls (because the actual forest area falls or carbon storage per 

hectare changes) then some credits will have to be repaid.  

We find that additionality is extremely hard to assess accurately and errors in the 

numbers of credits given for avoiding deforestation are likely to be very large. The major 

source of error in a project-based policy such as the Clean Development Mechanism is 

likely to be prediction of the land-use change baseline. We also find that errors in 

estimation of carbon storage could be large and could have significant impacts, 

particularly in a policy that does not rely on land-use baselines, such as the Kyoto policy 

applied to developed countries (Article 3.3). The uncertainty in carbon storage estimates 

is not equally important in all life zones. The ecosystems of most importance are those 

that still have forest that is under threat but where deforestation might be averted. We 

find that in Costa Rica, nearly 42% of all the loss of environmental integrity that would 

arise from poor carbon estimates arises in one life zone, Tropical Wet. This suggests that 

research effort might be focused in this life zone. 

We first present an integrated model of deforestation and carbon stocks in mature 
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forest estimated from Costa Rican data and present deterministic results from the model. 

This is a simplified version of a model presented in Kerr et al (2003). We then discuss the 

underlying sources of uncertainty in our model with a focus on: predictions of human 

land-use decisions and the effects of policy design; carbon field measurements; process-

based modeling of carbon; and scaling up of a plot-based model. We explain how we 

incorporate this uncertainty in our model. 

We then use our integrated stochastic model to assess empirically the effects of 

different types of uncertainty. Uncertainty implies errors. By translating these errors into 

effects on environmental integrity we assess the real costs of uncertainty on the 

environment and hence the value of reducing it. We estimate the overall cost from 

uncertainty and the relative roles of different sources, land-use baselines, and carbon 

storage estimates in each life zone.  
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2 INTEGRATED MODEL DEVELOPMENT 

To predict the evolution of carbon stocks as deforestation occurs, we use the 

simple integrated model depicted in Figure 1. Geographical information system (GIS) 

techniques are used to provide spatial modeling capability within the integrated model. 

The economic model incorporates both ecological factors (soils and “life zones” 

(Holdridge, 1967)) and economic factors (international prices, agricultural yields and 

production costs, the history of land use, and geographical access to markets) to 

determine the economic conditions on each plot of land and predict changes in land use 

as economic conditions change. The ecological model estimates carbon storage in mature 

forests.  

<<Figure 1 about here>> 

The economic and ecological models are coupled in two ways. First, carbon 

estimates from the ecological model are combined with predictions of forest cover to give 

us predicted carbon stock in each scenario. Second, the carbon estimates combined with 

carbon prices determine carbon payments per hectare for avoided deforestation. These 

payments affect land-use choices. In this simple model, we model the evolution of mature 

forest cover only; we do not consider reforestation.  

For each parcel of land, a land manager chooses a land use that will maximize 

their expected returns from a set of potential feasible land uses, such as crops, grazing, 

and leaving the land in forest. Put simply, the land manager will clear the land if the 

return from a cleared land use is higher than the return from a standing forest. Once all 
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land-use choices are simulated in space, we calculate the total remaining forest in each 

life zone type for every point in time. We then interact the remaining forest with 

estimates of carbon storage per hectare, calculated by the ecological model and averaged 

at the life zone level (given by Column 1a in Table 1), to give us a prediction of carbon 

stock. 

We can use our model to simulate the effects of policy scenarios, for example a 

carbon payment for forest. The carbon payment is determined by the international carbon 

price combined with the ecological model and varies by life zone (depending on potential 

carbon storage). As before, the land manager will make a land-use choice based on 

returns for the set of potential land uses, but in this case, the returns from forest 

protection are increased through our carbon payment. Fewer landowners will choose to 

clear because their net return from clearing is lowered. The landowners who will alter 

their behavior are those whose land yields low agricultural returns or those who have 

very high current carbon stocks in their forest. More forest will be left standing and more 

carbon will be stored relative to the baseline case. The following sections provide more 

details on the model components. 

2.1 THE ECOLOGICAL MODEL 

We estimate potential carbon storage in mature forests with the General Ensemble 

Biogeochemical Modeling System (GEMS), which incorporates spatially and temporally 

explicit information on climate, soil, and land cover (Liu et al, 2004a; Liu et al, 2004b). 

GEMS is a modeling system that was developed to integrate well-established ecosystem 
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biogeochemical models with various spatial databases for the simulations of the 

biogeochemical cycles over large areas. The well-established model CENTURY (Parton 

et al, 1987; Schimel et al, 1996; Liu et al, 1999; Liu et al, 2000; Reiners et al 2002) was 

used as the underlying plot-scale biogeochemical model in this study. GEMS has been 

used to simulate the impacts of land use and climate change on carbon sources and sinks 

over large areas (Liu et al, 2004b; Liu et al, 2004a).  

In this study, we used GEMS to simulate carbon dynamics in Costa Rica at a 

spatial resolution of 1140 m length scale. We calibrated GEMS against field data 

collected from 32 mature forest sites in six major life zones in Costa Rica (Liu and 

Schimel, 2004). Detailed description about the field measurements can be found in 

Kauffman et al (2004). The values of eight variables (i.e. carbon and nitrogen contents in: 

aboveground biomass; litter layer; standing and down woody debris; and the top 20-cm 

soil layer) were used to calibrate the CENTURY model. The calibrated values of model 

parameters (e.g. maximum monthly potential production, maximum decomposition rates 

of slow and passive soil organic carbon pools, and maximum decomposition rates of dead 

woody debris) were averaged by life zones and then incorporated with GEMS to simulate 

carbon stocks under potential vegetation in Costa Rica (Liu and Schimel, 2004). 

<<Table 1 about here.>> 

The life zone level mean values and their corresponding standard deviations of 

aboveground biomass carbon density simulated by GEMS and used in our integrated 

model are listed in Columns 1 and 2 of Table 1. In the integrated model, we use carbon 

stock estimates generated by the GEMS at the life zone level to translate forest cover into 
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total carbon stocks and then to determine the reward for land users who prevent 

deforestation on their land. Columns 3–11 show various other mean estimates taken from 

the literature, and columns 12 and 13 provide the mean and standard deviation of the 

literature and GEMS mean estimates combined.  

2.2 THE ECONOMIC MODEL 

We define the probability that a piece of land will be cleared during any period as 

the land-parcel’s hazard rate. To predict changes in forest cover, we must explain the 

variability in hazard rates in terms of observable characteristics of the land parcel that are 

likely to affect the land managers’ land-use choices. 

To create our economic model, we could have tried to calculate the optimal land-

use choice for every land parcel in Costa Rica, giving us economically optimal land-use 

choice as a function of observable land-parcel characteristics. However, people do not 

necessarily behave in economically optimal ways. Non-economic factors such as cultural 

attitudes also affect behavior. Furthermore, an analyst is unable to observe all the factors 

that would drive optimal choices. Consequently, to create our model we observe past 

land-use choices and estimate the relationships between land clearance and each land-

parcel’s observable characteristics, giving us a model based on actual behavior. 

We estimate these relationships econometrically for each spatial unit i across the 

whole of Costa Rica over four time periods (t = 1900–1962, 1963–1978, 1986–1996, 

1997–2000) using the annualized average deforestation rate during each time period as a 

measure of the hazard rate of deforestation. We exclude the period 1979–1985 because of 



Kerr, Hendy, Liu and Pfaff 

 

12 

 

 

data anomalies. We define the spatial unit of observation, our “land parcel”, as the 

disaggregation of each of 436 administrative districts into each of the 12 major life zones. 

In 1900 there were 1211 forested land parcels.  

The magnitude and direction of the observable drivers of land use change are 

estimated using the equation2: 

 ittit
it

it DX εδ
h1

h
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

βln   (1)

where:  

h is the hazard rate 

X is a matrix of observable explanatory variables 

β are the estimated coefficients of observable explanatory variables 

D are dummy variables for each time period 

δ are their coefficients 

ε is the error. 

The variables we use to explain the land managers’ decisions are given in Table 2, 

together with their means and estimated coefficients. For the regressions, we normalize 

returns, cleared per cent and distance by subtracting their global means so that the 

normalized hazard rate at the global mean of the variables in the first period is 

approximately zero.  This means that we can extract time dummy coefficients that 

primarily reflect national development trends and tend to zero as the effect of national 

development on deforestation tends to zero—this is useful for forecasting (see Appendix 

A). More details on the data and model development are given in Kerr et al (2004).  

                                                 
2 We estimate this equation using a grouped logit regression pooled over time. We include in our regression 
all land parcels that have forest on them at any point in time, including those that have been reforested, as 
they will still be subject to deforestation hazard in the next periods. We do not include national parks in our 
regression, however, as they will not be subject to the same kinds of deforestation pressure. 
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<<Table 2 about here>> 

Briefly, the land manager will be more likely to clear productive land that is 

suitable for crops with high returns. To capture this in our model we use expected returns 

as an explanatory variable. Current actual returns in each period for crops grown in each 

land parcel are calculated from the exogenous variables international prices, yields, and 

production costs. We assume that expected potential returns are simply equal to current 

returns. Returns vary by life zone, district, and period. As we see in Table 2, returns 

positively and significantly increase deforestation in most samples. The returns variable 

has large errors because of the difficulties in generating accurate historical data. It 

performs better in recent periods where the data is of better quality and our implicit 

assumption of a market economy is more accurate.  

Access to national and international markets affects the farm-gate returns that 

land managers receive for different crops. This will vary temporally and spatially, with 

land-parcels further from cities and international ports being less accessible and hence 

receiving lower returns than those closer. As road networks are developed and improved, 

the difference in distance is likely to have less effect. Formally we model: 

Farm-gate returnsit = international returnsit + (β1 + β2(time)) x distancei (2)

where distance is the straight-line distance from land parcel i to the closest of the 

three major markets in Costa Rica (Limón, San José, and Puntarenas). As we would 

expect, in Table 2 β1 < 0 and β2 > 0. Both are significant. 

Road networks will not necessarily develop uniformly across the country. The 

interaction of distance and time will capture only spatially uniform road development 
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effects. Other infrastructure also will develop in a non-uniform way, for example 

electricity networks and agricultural distribution services. To control for this non-uniform 

development, we include the percentage of the forest that has been previously cleared, 

percentage cleared, or cumulative deforestation. In general, as people clear land, 

infrastructure will develop around them. This decreases the costs of production, raising 

returns and hence increasing the likelihood that people will clear the remaining forest. 

We find empirically that this has a positive and significant effect.  

However, the forest on the best land (not too steep, well drained) within each 

observably homogeneous land parcel is likely to be cleared first. Thus, we might expect 

that productivity and hence potential returns on the remaining forested land will be lower 

and pressure to deforest will fall. This is likely to have the greatest effect as the 

percentage cleared becomes high, so we allow for a quadratic effect of previous clearing, 

percentage cleared2. This turns out to be insignificant. 

We expect that a significant amount of national development will affect the 

country more uniformly as private and public institutions develop (e.g. educational 

facilities, enforcement of laws, and capital markets). Increased returns associated with 

development initially result in extensification of agriculture, increasing pressure on 

forests. Eventually, development results in higher capital intensity and wages, and 

intensification of agriculture. The economy moves away from reliance on agriculture as 

the industrial and service sectors grow. This eases deforestation pressure. Conservation 

regulations are generally strengthened as countries develop. These increase forest 

protection. To control for national development in our regression model we introduce 
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time dummies for each period. We find that underlying deforestation pressure falls 

consistently over the period but falls most rapidly after the mid-1980s. 

With this model design and these explanatory variables, we explain between 22% 

and 40% of each period’s cross-sectional in-sample variation and 37% of the overall 

variation. This amount of explanatory power is reasonably consistent with other 

economic deforestation modeling. Comparable studies that have looked at tropical land-

use change include Pfaff (1999), who examines deforestation in Brazil and explains 37% 

of the variation, and Chomitz and Gray (1996), who study Belize and explain 39% of 

land-use change cross-sectionally. 
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3 DETERMINISTIC MODEL RESULTS 

In this section, we demonstrate one simple use of the integrated model: estimation 

of the responsiveness of deforestation to carbon payments—the carbon supply curve. The 

period we consider here is the period when deforestation slows in Costa Rica, 1986–

1997. Costa Rican real economic growth rates were on average substantially better than 

the rest of Central America during the period 1960–2000 (Rennhack et al, 2002). As a 

result, Costa Rica is one of the more developed Central American countries; other 

countries and regions may still be in the rapid deforestation phase, for example 

Guatemala, Southern Mexico, and Colombia. Studying this period could give us insight 

into carbon supply that we could apply elsewhere. In contrast, after 1997, Costa Rica 

experienced very little deforestation, so it would also supply very few carbon credits 

through avoided deforestation. Because the model is simple and based only on Costa 

Rican data, the simulations given below should be thought of as illustrations with an 

empirical basis.  

When we separate the returns variable from other X variables, apply the 

coefficients from column I in Table 2 and include an annual carbon payment that reduces 

the net return from converting forest to agriculture, Equation (1) becomes: 

( ) δ11)1(
)1(

)1(

1
ln +

−
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+

+ ++×−×=⎟
⎟
⎠

⎞
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⎝

⎛
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t DXhaperCpaymentcarbonannualreturns0.065
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β  (3) 

where r
tX −
+1  are the explanatory variables other than returns. 

To simulate supply we first forecast forest area in a non-policy case; this 
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projection is based on Equation (3) with no annual carbon payment. It is done iteratively. 

In this section we use an in-sample projection using actual data. When translated into 

carbon, this provides a potential baseline against which carbon storage could be credited.  

With a positive annual carbon payment, annual returns to mature forest will be 

equal to the annualized-equivalent carbon price times the amount of carbon that the 

primary forest stores. This annual payment can be thought of as interest on a payment for 

permanent protection, or as a simple rental payment if carbon prices are not expected to 

change. Actual rental payments are complex to predict as they depend on expectations 

about future carbon prices (Kerr, 2003). We can now predict forward to give us a new 

prediction of forest and carbon stock. The difference between the predicted carbon stock 

under the simulated policy case and the predicted carbon stock with no policy will give 

us a measure of the effectiveness of the policy. This difference is defined as the carbon 

supply, the additional carbon induced by the annual carbon payment.  

<<Figure 2 about here>> 

In Figure 2 we show the carbon forecast in the baseline and one policy case with a 

US$14.15 annual carbon payment. The upper curve in the figure shows how carbon 

stocks evolve over time if the carbon payment price is continued. The vertical projection 

of the difference between these two stocks shows the cumulative supply of carbon 

available at any point in time. The same reward elicits different amounts of additional 

carbon over time depending on the amount of deforestation that would have occurred. 

The amount of additional carbon stored in forests cumulates over the years because every 

year some deforestation that would have occurred is prevented. In the later years when 
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we predict that deforestation will cease, no additional carbon is stored.  

A payment of US$14.15 is chosen because in our model it reduces the 

deforestation rate by 15%, which is around the level both Brown et al (1996) and Niles 

and Schwarze (2000) assume when estimating the potential contribution of avoided 

deforestation to climate change mitigation. This payment is very high relative to current 

estimates of likely international carbon prices. With a 10% discount rate, this could 

translate to around US$145 per tonne of permanent reduction.  

If we vary the policy across a range of prices, we can map out a supply or cost 

curve. (See Appendix B for details on the derivation). In Figure 3, we show a cumulative 

supply curve 11 years after the introduction of a carbon rental price (1986–1997). At low 

payments, the curve is reasonably straight, but as the payment increases, it begins to 

curve upward. A US$1 annual payment per tonne of carbon seems more likely than 

US$14.15. Our model is also probably more accurate when dealing with simulations that 

involve small policy perturbations. A US$1 annual payment leads to a reduction in 

deforestation of 1.2%. The cumulative stock after 11 years for a US$1 rental price is 261 

million tonnes and the baseline stock is 260.5 million tonnes, suggesting a cumulative 

supply of 0.5 million tonnes in Costa Rica. Thus at what might be considered reasonable 

prices, our results suggest that the potential for avoided deforestation to contribute to 

climate change mitigation may not be as great as some anticipate. 

The supply or cost curve can also be used to estimate the cost of storing a given 

level of additional carbon. The horizontal distance is the cumulative amount of storage 

offered at each price up to that year. The integral under the curve up to the chosen level is 
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the cost of continuing to protect that level in the given year. The first units are cheap to 

store but they get increasingly expensive as forest on more valuable agricultural land is 

protected.  

<<Figure 3 about here>> 
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4 UNCERTAINTY: STOCHASTIC MODEL DEVELOPMENT 

4.1 SOURCES OF UNCERTAINTY IN A CARBON CREDIT SYSTEM 

In a policy situation, the land use baseline will be an out-of-sample forecast and 

the carbon numbers will be estimates. We can quantify some of the uncertainty in these 

and extend the deterministic simulations above to produce predictive distributions of 

deforestation and carbon supply.  

Credits Created – (Actual forest area – Predicted baseline forest area)  × Estimated C per ha (4)  

As we discussed earlier, carbon sequestration will be rewarded based on the amount 

of actual forest retained, net of predicted baseline, times the estimated carbon storage per 

hectare (Equation (4)). Uncertainty in each of these terms will result in uncertainty in 

environmental outcomes from the policy. 

 Here we focus on the second two terms: land-use baseline and carbon per hectare. 

Environmental losses occur when the number of credits created exceeds the actual 

amount of additional carbon that is stored as a result of the policy. Environmental loss 

occurs if the baseline forest is underestimated, or the amount of carbon that is actually 

stored per hectare is overestimated; each results in a relative rise in emissions.  

Environmental Loss = Credits Created – True Additional Carbon (5)

4.1.1 Predicting deforestation out of sample 

We apply the economic model with statistically estimated coefficients to predict 
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out-of-sample deforestation rates and thus forest stock using an iterative process (see 

Equation (6)). To predict deforestation, we need to predict values for the independent 

variables (listed in Table 2) at t+1 for every land parcel in Costa Rica. We predict a 

development path by fitting a curve to the time dummies’ coefficients. It does not seem 

reasonable to suppose that the development process simply stops. The prediction process 

is described in Appendix A. We can then move forward along this curve to get 

development predictions over time, i.e. )1(
ˆ

+tδ . Percentage clearedt+1 is evaluated at the 

beginning of the prediction period. It is known for the first period of prediction, based on 

current forest, but after that is updated based on the prediction of deforestation in the 

previous period. “Returns” is a function of price, yield, and cost of production of a crop. 

An accepted forecast for price is a product’s current price. We cannot predict crop-

specific technology change, thus cannot predict changes in production costs or yields. 

Consequently, we assume in our deterministic modeling that returns stay constant.  

We can now evaluate the equation, for each land parcel, based on the predicted 

values of the explanatory variables:  
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We solve for the hazard rate, ht+1, giving us the predicted deforestation rate for the 

time period t+1. We then repeat this process for period t+2. 
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4.1.2 Errors in land use baselines 

Errors associated with the prediction of a land-use baseline are unobservable; we 

are predicting an event that will never occur if there is a policy. Uncertainty in baseline 

projections will arise from uncertainties in the estimation of the model parameters, 

prediction of the driving variables of the model, and model specification errors. The 

underlying sources of error in land-use baselines are the complexity of human behavior 

and the large range of unobservable and unpredictable factors that affect that behavior.  

Deforestation pressure depends heavily on national-level economic, political and 

even natural conditions. War, recession, hurricanes or pests in key crops can have major 

impacts on the profitability of land clearing. On a more mundane level, the rate of 

economic development depends on a wide range of domestic policies and development in 

key economic and legal institutions. Corruption and political instability can reduce the 

returns to investment significantly. Foreign aid, such as for road building, can provide 

impetus for development. These conditions can change dramatically over time and are 

almost impossible to predict. They affect the common component of deforestation that 

affects all parcels and do not average out across the country.  

Changes in key international commodity prices, such as coffee or beef, can be 

critical. These tend to be unpredictable—otherwise people would profit from them in 

financial markets. They will affect some areas more than others and create uncertainty in 

our “returns” variable. Pfaff (2004) illustrates the effect on our baseline predictions of 

one such “shock”, showing the impact on the predicted baseline if the banana market 

collapsed. Even if average returns were known, actual plot-level returns and responses to 
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them would be highly variable. Our empirical model primarily captures land user 

responses to measures of average returns to different land uses in large aggregated areas, 

and to birds-eye distances to markets. Actual agricultural returns on newly cleared land 

will vary enormously depending on the specific characteristics of the plot, the technology 

available at different points in time, and the farmer's access to capital to invest in the plot. 

The transport costs of getting different products to market will vary depending on road 

access and the crop type. Birds-eye distance is a weak proxy for this. Even with the same 

transport costs, different farmers may have differential access to the more valuable export 

markets because of marketing systems. Even if we could estimate the actual farm-gate 

returns accurately, different farmers will respond differently because of their age, their 

past experience, their education, the security of their land tenure, their attitudes to 

conservation and many other factors. Some of these sources of heterogeneity will wash 

out over large areas but others will not.  

4.1.3 Errors in estimates of carbon storage 

The carbon density in forest in a system that offers rewards for carbon storage 

will need to be estimated by field measurements or by model simulations parameterized 

and validated with local field measurements. Thus uncertainty will arise in estimating 

carbon density through sampling design, measurement, and model simulations.  

Uncertainty is inherent in field measurements and laboratory analysis. Random 

and/or systematic errors can be introduced in the measurements of tree diameter at breast 

height (DBH), tree height, carbon content in plant tissue, and wood density (Brown, 

1997; Phillips et al, 2000). Errors in the application of allometric equations, which are 



Kerr, Hendy, Liu and Pfaff 

 

24 

 

 

frequently used to estimate carbon density from tree measurements (e.g. Diameter at 

breast height, height and wood density), can contribute to the overall uncertainty as well 

(Keller et al, 2001; Brown, 1997; Phillips et al, 2000). Another source of error in regional 

carbon estimates comes from the selection of field sites (Smith 2002; Macdicken 1997; 

Phillips et al, 2000). Nevertheless, this error can be minimized with an adequate 

deployment of sampling plots (Macdicken 1997).  

Carbon stock estimates generated by models inevitably contain errors. Major 

sources of error include an imperfect representation of the reality by the model or the 

weakness of model structure, as well as errors contained in model parameters and input 

data. Calibration and validation of ecosystem models have suggested that certain model 

parameters vary in space and time. It is often difficult to predict the spatial and temporal 

variations of parameters. Poor predictions are likely to introduce errors in carbon 

estimates. Input data, such as land cover, soil, and climate variables, also contains various 

degrees of error, which can potentially propagate to the carbon estimates through the 

modeling system. To minimize the error in model simulations, it is crucial to have the 

model calibrated and verified first. 

4.1.4 Errors introduced by policy design 

The most accurate carbon measurement would require fieldwork on every plot by 

qualified, objective ecologists. This may work well when projects are few and small but 

will probably be inordinately expensive relative to the value of the credits when projects 

are large. Even with this level of effort, errors and bias will still arise. Accurate 

measurement also risks non-transparency and potential corruption because results cannot 
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be easily replicated. Allowing project organizers to do measurement invites bias. All 

these factors suggest that a wide-scale, effective program needs to simplify carbon 

measurement and reward. For example, we model a system where only one level of 

carbon storage per hectare of mature forest is assumed for each life zone. The tradeoff is 

that this introduces errors in carbon measurement. We do not assert that one level per life 

zone is optimal. Further research needs to compare the costs of the environmental losses 

we identify and the costs of more accurate measurement.  

In addition, with the reward formulated as in Equation (3), we reward only carbon 

stored in a forest. We are making an implicit assumption that all land uses, soil types, and 

vegetation other than those in forests store zero carbon. This introduces a bias in the 

integrity of environmental outcomes; we may be rewarding more carbon storage than 

actually occurs. In fact, however, it appears that very little carbon is stored in pasture—

the main use of recently deforested land in Costa Rica. The carbon that does remain tends 

to be in remnant trees that are gradually harvested (personal communication with Judith 

Jobse and Boone Kauffman). Allocating baseline carbon to all the potential land uses on 

a plot could reduce the error in carbon credited. However, it would require more 

understanding of the carbon processes in different land uses. 

4.2 QUANTIFICATION OF UNCERTAINTY 

We quantify the effects of uncertainty on environmental losses using two 

approaches: first we introduce variation into the model by varying the estimated and 

predicted variables and parameter values within confidence limits in Monte Carlo 
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simulations; and second we compare our predictions with out-of-sample measurements. 

We use both approaches within our economic model. We must always use a 

Monte Carlo to assess uncertainty in supply and hence need to model uncertainty in 

economic returns. For each sample, we vary the returns for each crop each year using a 

random walk that varies by crop to create returns paths that vary by land parcel. We 

assume that the returns error distribution is normal with standard deviation equal to the 

standard deviation of the changes in crop price over time. We do not vary yield or 

production costs because we have no good way to predict either the trend change or the 

uncertainty in that change.  

The use of a random walk means that shocks will propagate through time in each 

sample. Uncertainty is also inherent in the estimated return coefficient in our economic 

model. When the model was estimated using regression analysis, the error distribution for 

each coefficient was also generated. We repeatedly randomly draw the return coefficient 

based on its regression-estimated mean and variance-covariance matrix, assuming 

normally distributed errors. 

When we use a Monte Carlo to study uncertainty in land-use baseline forecasts 

we vary the returns variable and coefficient as above and also vary all other coefficients. 

For the time dummy coefficients, we stochastically vary the two estimated parameters in 

our national development function, using their variance-covariance matrix, and solve for 

the third parameter so that the required constraint is met.  

Each perturbation of the model parameters will alter the land managers’ clearance 

decisions, and thus lead to a different deforestation rate. In this way, we generate 
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predictive distributions of forest levels. This modeling generates the confidence intervals 

around our supply simulations and land-use baseline forecasts.  

We also quantify uncertainty in the baseline predictions using the second 

approach, by comparing predictions with out-of-sample measurements. These are the 

numbers presented in the results. We can do this because while in a real policy a baseline 

projection will be unobservable, there was no policy in our omitted period. Forecast 

errors were assessed during different periods, by omitting the appropriate period, and in 

certain land parcels, by omitting those parcels during model estimation. Our forecast 

forest error is the difference between actual and predicted forest. This comparison leads 

to errors that fall within one standard deviation of the errors that were predicted when we 

used only the Monte Carlo approach, which suggests that our specification of economic 

model uncertainty is not too bad.  

To quantify carbon uncertainty we use only the Monte Carlo approach. True 

carbon is unobservable. We consider two sources of error in carbon density estimations: 

errors in mean estimates of life zone carbon density, mε , and errors because of 

heterogeneity in carbon density within life zones, vε . We define actual carbon stored in a 

hectare of mature forest as:  

 vmcc εε ++= ~  (7) 

where c~ is estimated carbon storage. By taking the mean of the above equation, 

we define carbon bias: 

 ccm −= ~ε   (8) 
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where mε  is the mean error, c~ is the mean of the carbon estimates and c  is the 

mean of actual carbon. 

We use the carbon estimates generated by GEMS (see Table 1) as the levels of 

carbon for the reward system, c~, and assume that actual carbon varies relative to this. To 

simulate carbon uncertainty we must estimate each of the components in Equation (7). 

The variability within life zones was simulated by randomly drawing vε  from 

distributions empirically estimated from the GEMS results (the variance of these data is 

shown in Column 2 in Table 1, see Liu and Schimel 2004 for more detail). To include 

variability from the distribution of mean estimates, we also need to know how mε  is 

distributed. Because c is unobservable, we cannot quantify the bias, mε  (Equation (8)). In 

this study, we arbitrarily set the bias to be negative so actual carbon is systematically 

lower than our estimates. We randomly draw mε  from a lognormal distribution with mε  

set to be –10% of c~ and standard deviation derived from variation in literature 

estimations of carbon values (see Column 13 in Table 1). The combined standard 

deviations from both sources are listed in Column 1 in. They range from 35% to 54% and 

on average are much larger than the Houghton et al (1996) illustrative estimate of a 

16.5% one-standard-deviation range for uncertainty in emissions factors for land use 

activities.3  

                                                 
3 This number is based on an interpretation of the uncertainty information presented in Table A1-1 in 
Annex I of Houghton et al (1996). 
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5 ENVIRONMENTAL COSTS OF UNCERTAINTY 

In this section, we use our stochastic model to look at the effects of uncertainty on 

the environmental implications of policies that aim to prevent carbon loss through 

deforestation. In other words, we quantify the environmental costs of uncertainty. 

Following Equation (6) we define environmental loss (EL) as: 

[ ] [ ]
carbon additional total

cFcrF
created credits carbon

cFcrFEL
×−−×−

=
)0()~(~)0(~)~(  (9) 

where  

r  is the carbon payment (US$ per tonne of carbon per year) 

F(0)  is actual baseline forest in hectares 

F~ (0) is predicted baseline forest 

F(r c~ )  is the forest stock generated with annual carbon payments based on the 
estimated carbon. 

Environmental losses can be decomposed further into three terms that represent 

the sources of that uncertainty: “wrong supply times carbon error”, “baseline error” and 

“error interaction”. By rearranging Equation (9) we can see: 

[ ] [ ] [ ] [ ] [ ]
ninteractioerror

ccFF
errorbaseline

cFF
errorcarbontimessupplywrong""

ccFcrF
EL −×−+×−+−×−

=
~)0(~)0()0(~)0(~)0()~(

 (10) 

The first term in Equation (10), “wrong” supply times carbon error, is 

environmental loss arising from incorrect carbon estimates that lead to overpayment or 

underpayment of credits for additional forest. The more additional forest is created, and 

the larger the carbon error is, the larger is the environmental loss. Carbon error also 

influences the land-use decision in the economic model when a carbon rental payment is 
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introduced: higher carbon estimates lead to higher carbon payments and more protection. 

A positive initial error in carbon estimates is compounded by a positive land use response 

that means the error affects more land. Even if carbon estimates are unbiased, 

environmental losses occur on average. A positive bias in carbon estimates will 

exacerbate the inappropriate land use response.  

For example, suppose two ten-hectare plots are identical in all ways. In particular, 

the farmer on each plans to clear two hectares (or equivalently have the same probability 

of deforestation in the baseline). Their land contains 100 tonnes carbon per hectare. 

When the policy is introduced, because of errors in carbon estimation, the farmer on one 

plot is offered a carbon payment for more carbon that his land really contains, 110 tonnes 

per hectare, while the farmer on the other plot is offered less, 90 tonnes per hectare. If 

they both responded identically to the carbon payment and reduced their clearing to one 

hectare, each would receive an incorrect carbon payment but the carbon credits given 

would be correct on average; additional carbon protected would be equal to the carbon 

credits created. Suppose, however, that the first farmer, with the high payment, decides 

not to clear any land while the other, with the lower payment, decides to ignore the 

potential payment and continue to clear two hectares. The additional forest will still be 

two hectares but the carbon payment will be higher than it should. Even an unbiased 

carbon payment can lead to environmental losses. 

The second term in Equation (10), baseline error, is the environmental loss that 

arises solely from land-use baseline errors. This is the combined effect of uncertainty in 

all the economic and ecological variables that influence a land manager’s clearing 
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decision when no carbon payment is in place. This term is not affected by carbon 

measurement errors as no carbon price is paid in the baseline case.  

The third term, error interaction, is the interaction of the two errors. If both land 

use and carbon errors were unbiased, the second term should be small when aggregated 

to the national level, as we would not expect the baseline error and the carbon error to be 

correlated. However, our errors will very likely have a significant bias, so this term will 

not be zero. With the introduction of the uniform carbon bias into our model, the 

contribution of the error interaction term to EL will simply be 10% of the baseline error.  

5.1 SIMULATING ENVIRONMENTAL LOSSES 

In this section, we consider three scenarios and use out-of-sample observed forest 

cover and our integrated stochastic model in Costa Rica to estimate environmental losses. 

First, we consider the potential environmental losses in the year 2000, and their 

decomposition, assuming a policy had been implemented in Costa Rica in 1997. This 

scenario will approximately represent behavior during the developed phase of Costa Rica 

and give us some insight into the impacts of implementing a policy now.  

Second, we investigate our cross-sectional predictive power. If we have accurate 

measures of the land-use paths on some land parcels over a period, how well can we 

estimate the behavior of other parcels? With this experiment, we can gain some 

understanding of the usefulness of using control plots as predictors for the baseline 

deforestation that would have occurred in other plots where the credit system has been 

adopted. If control plots work well, a system that uses them might involve much smaller 
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environmental losses. We simulate this by first estimating the model using a 90% random 

sample of all the land parcels, stratified across life zones, for all periods. We then predict 

out-of-sample on the other 10% of land parcels from 1997 to 2000.4  

Third, we estimate the EL for the period 1986–1997, creating a hypothetical 

“other country” using out-of-sample data from Costa Rica, and compare it to the 

predictions from our model. For both the first and third scenarios, we produce our 

baseline simulations from an economic model estimated excluding the time period in 

which we simulate (columns II and III in Table 2) so they are true predictions.  

5.2 RESULTS 

Following Equation (9), EL is broken down into carbon credits created and total 

additional carbon. We present our estimates of environmental loss in Table 3 as a 

percentage of the “baseline carbon loss”. Baseline carbon loss between periods 0 and T is 

defined as (F0(0) – FT(0))c. Between 1986 and 1997, 19% of forest was lost, and between 

1997 and 2000 around 0.5% of forest was lost. We choose to use this for scaling because 

it is unaffected by the simulations. Another obvious comparison would be with the level 

of true additional carbon. However, this changes with the carbon rental price and with the 

carbon error. All the results presented here are based on a carbon rental price of 

(1997)US$1 and are averaged over 10,000 samples. 

 <<Table 3 about here>> 

                                                 
4 This choice of predicting land use for 10% of the land parcels is completely arbitrary. 
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In each scenario, a US$1 carbon payment would save about 1.2% of the carbon 

that would have been lost without a policy. In Costa Rica, this equates to about 360,000 

tonnes/year for the period 1986–1997 and only about 9,500 tonnes/year of carbon for the 

period 1997–2000.  

However, in each scenario the number of credits is much larger than the 

additional carbon. In the first experiment, 1997–2000, the number of credits created is 

nearly 40 times larger than the true additional carbon. This results in large environmental 

losses: 39.9% of the baseline carbon loss. For the 10% sample for the 1997–2000 period, 

the overall environmental loss was much smaller, though it was still four times as large as 

the total additional carbon gained. For the development period, 1986–1997, the number 

of credits created is negative. The error is still large, 32%, but is an environmental gain. 

The negative credits arise because the baseline prediction, F~ (0), is significantly higher 

than the actual forest baseline.  

What is driving these large errors? Understanding this may help us develop 

research strategies to reduce them and design policies to minimize their effects. 

5.2.1 Decomposition of total error 

Table 4 shows the decomposition of environmental losses by source for our three 

different experiments. This allows us to explore the importance of different sources of 

uncertainty. In all three cases, the baseline error swamps the other two errors. In the 

national simulations, the baseline error alone is about 30–40 times larger in absolute 

value than the additional carbon supplied with a US$1 rental price. In the first two 
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scenarios, the baseline error contributes to environmental loss. In the third scenario, the 

baseline error contributes to environmental gains. 

<<Table 4 about here>> 

The baseline error and magnitude of environmental loss is much smaller in the 

case of the 10% sample. By identifying the national development trend from other areas, 

the baseline errors are confined to spatial extrapolation. In the case of the 10% sample, if 

we repeatedly drew samples, on average there would be no baseline error. There would 

still be supply errors, and because of the carbon bias the error interaction would still be 

positive on average. This suggests that the use of control plots in this case might have 

been a relatively good indicator for baseline behavior.  

This inference probably depends on two factors. First, a small percentage of the 

country (10% of forest parcels) was exposed to the carbon reward. The policy-induced 

changes in these areas probably would not have large effects on development that would 

spill over to other areas. Thus other areas might be reasonably assumed to be at their true 

baseline—i.e. the control plots are a true control. If a large part of the country were 

involved in projects, the remaining area would no longer be a valid control. Second, the 

sample chosen was random, so was comparable to the non-sampled area. Real projects 

that cover part of the country are unlikely to be randomly located. Controls might need to 

be strategically chosen to closely match projects.  

In contrast the effects of errors in carbon measurement seem relatively minor. 

Through the “wrong” supply times carbon error term, the carbon error accounts for only 

about 1% of the environmental loss in the national scenarios (A and C). It accounts for a 
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larger percentage in the 10% sample because the baseline error is smaller in that case, but 

error is a similar magnitude as a percentage of baseline carbon loss in all three cases. 

Because we set the carbon bias to be consistently +10% of mean carbon, the error 

interaction term is always 10% of the baseline error. Carbon bias exacerbates the land use 

baseline errors.  

5.2.2 Sensitivity of environmental losses to specification of errors 

and scenarios 

In the previous section, we found that the errors in estimating the baseline land 

use dominated any errors in carbon measurement. Here we explore whether this is a 

robust result or a result of specific model assumptions. We also consider what this means 

for the importance of reducing the errors in carbon storage estimates, which is where 

ecologists have a real potential contribution.  

Are land-use baseline errors likely to be this large? In the two national scenarios 

we overestimate or underestimate baseline forest loss by between 30 and 40%. Predicting 

forward from 1997 for three years we predicted 0.68% cumulative deforestation where it 

was only 0.5%. Using our modeled uncertainty, these draws fall within one standard 

deviation of our predicted land-use baseline. This suggests that our specification of land-

use uncertainty may be a reasonable representation. It also suggests that land-use baseline 

errors could be much larger still even when predicted on a broad spatial scale with 

relatively good data. The uncertainty in our model is likely to be close to a lower bound 

on uncertainty in real projects.  



Kerr, Hendy, Liu and Pfaff 

 

36 

 

 

It is possible that the errors in baselines are much larger in particular years than 

over a long period. Over 50 years it might be reasonable to predict that a country will 

reach an agricultural equilibrium where all good land is developed but poor quality land 

is untouched, regenerating or replanted. This long-run equilibrium might be easier to 

predict than the timing of change. Thus overly generous baselines in some years might be 

offset by less generous ones in others, leading to lower cumulative errors in a long-term 

policy.  

Carbon errors might be much greater than our model suggests. The land-use 

baselines are compared with true out-of-sample data. In contrast, the specification of 

uncertainty in carbon measurement is largely based on educated guesses. Comparing 

literature estimates, the range is very large in some cases. For example, in tropical wet 

forest Helmer and Brown (1998) predict 259 tonnes per ha while Brown and Lugo (1982) 

predict 139 tonnes. Bias could be as large as 250%. 

The land-use baseline errors interact with the carbon errors. If the bias in carbon 

measurement were +100%, the interaction would magnify the baseline error and double 

the overall error: i.e. from 37% of potential carbon loss in the first scenario (baseline 

error only) to 72%. Thus, carbon measurement is particularly important where there are 

land-use baseline errors.  

Carbon errors also have effects that are independent of baseline errors. Suppose 

the policy was defined in such a way that the baseline was not important. For example, in 

developed countries, the Kyoto “baseline” for land use change is set fairly arbitrarily. The 

rules in Articles 3.3 and 3.4 implicitly define a “baseline” relative to which gains can be 
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identified and rewarded. The errors in baselines for developing countries might be no 

larger than the errors in these Kyoto “baselines”. If developing countries moved toward 

negotiated baselines at a regional or national level, there would be a one-off impact on 

environmental integrity. This could be offset by setting stricter targets elsewhere, either 

in the same country or in other countries. After that, the baseline is no longer an issue. 

Carbon measurement is always an issue. 

In Table 4 we showed that with a carbon payment of US$1 and carbon bias of 

10%, carbon measurement error led to losses of 0.3% of baseline carbon loss. This 

translates to a roughly 25% environmental loss on each credit created. This is roughly 

split between the direct effect of the bias on every unit of carbon protected and the effect 

of variance in carbon estimates combined with the land use response to the varying 

carbon payments. If, in contrast, the carbon payment was US$10 and the bias was 100%, 

the carbon measurement error would be much more significant. A percentage increase in 

carbon error will have the same effect on supply as the same percentage increase in 

international price because they operate through the same process—i.e. by increasing 

carbon rewards. The 100% bias would raise the effective payment to US$20. Additional 

carbon at US$20 would be roughly 24% of baseline carbon (assuming linearity in supply) 

and the direct environmental loss resulting from the bias would also be around 24%, with 

at least a 100% environmental loss on each credit. 

In contrast, land-use baseline errors are “lump sum”: they occur independent of 

the magnitude of carbon rental price and the estimates of carbon. Overall, baseline errors 

are likely to dominate if carbon prices are low. At low carbon prices, carbon errors would 
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matter only because of their interaction with land-use baseline errors. If prices are high 

and carbon bias and variance are large, however, carbon errors could lead to significant 

environmental losses.  

As well as the effects on the environmental integrity of the program, the 

behavioral effect of carbon errors means that they have implications for the efficiency of 

the policy. In areas where we overestimate carbon per hectare, more forest will be 

protected than is efficient. In other areas, underestimation will lead to carbon-rich forest 

being inefficiently deforested. Even if the same area of forest is protected overall, if the 

carbon rewards are wrong, the “wrong” forest will be protected. This poor targeting of 

rewards raises the overall cost of achieving the environmental goal. Incorrect baselines 

have no effect on efficiency. 

In summary, carbon errors may be larger than they appear. They are most 

significant for environmental loss when they interact with large land-use baseline errors 

and when carbon prices are high. Carbon errors cause inefficiency and raise the cost of 

mitigation. They will continue to be important even if developing countries move toward 

having national targets as developed countries do. Ecologists can reduce the level of 

carbon error.  

5.2.3 Contribution of uncertainty in different life zones 

Here we consider how and why the effects of carbon errors vary across 

ecosystems (life zones). This could help target future ecological research to reduce this 

source of uncertainty, and therefore environmental losses, more effectively. It can also 
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suggest how accurately carbon rewards should be defined in each life zone.  

The first column in Table 5 shows the modeled coefficient of variation in carbon 

in each life zone. This combines heterogeneity within life zones with variance in the 

estimates provided by field studies from the literature. This uncertainty can be reduced 

either by better estimates of the mean for the life zone, or through more carefully targeted 

carbon rewards that take heterogeneity within the life zone into account.  

The life zones with the greatest overall uncertainty in carbon measurement are 

premontane moist forest and montane rain forest. Looking back to Table 1 we can see 

that the variance in the montane rain life zone is heavily driven by uncertainty in field 

studies. Montane wet also has high uncertainty in field studies. The high level of 

uncertainty might make this seem important to study. In contrast, premontane moist 

forest is in areas with highly heterogeneous conditions, so it might require a more 

differentiated policy.  

Not all errors in estimates of carbon storage are equally important, however. If 

there is no forest in a life zone, no forest can be protected—so it does not matter if we do 

not know how much carbon could have been protected. Studying the prevalent forest 

types makes sense. In Costa Rica, this suggests emphasis on tropical wet forest, 

premontane wet forest and tropical moist forest (Table 5, Column 3). Although montane 

ain forest is a life zone with considerable ecological uncertainty, there is little forest left, 

so for rewarding avoided deforestation in order to reduce carbon release it is relatively 

unimportant.  

In addition, however, some life zones may have forests that cover large areas but 
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are not at risk. Some life zones are unprofitable for agriculture. As long as the forest is 

not clear cut for forestry or inefficiently cleared by desperate peasants it may never be 

cleared. Measuring carbon accurately in these areas may also be less important.  

Column 4 of Table 5 indicates the environmental losses per hectare of forest in 

each life zone relative to the average loss.5 This measure combines the risk that land will 

be cleared, the level of carbon storage and the uncertainty in carbon measurement. These 

results are derived from our model. For this analysis, we set baseline errors equal to zero. 

That is, we set )0(~)0( FF =  in Equation (10). As before, the bias is assumed to be 

constant at 10% of the mean, the annual carbon payment is US$1 and results are averaged 

over 10,000 samples. 

Tropical moist forest has high carbon uncertainty and constitutes a reasonable 

fraction of remaining forest. However, it faces a low risk of clearing and therefore low 

environmental losses when there are carbon errors. In contrast, although tropical wet 

forest has quite low carbon uncertainty, this forest is at high risk because it is in areas that 

are suitable for agriculture, so these errors lead to high environmental losses.  

 

<<Table 5 about here>> 

Combining all these effects in the final column, we find that tropical wet forest, 

which has both the largest amount of forest and the greatest environmental loss per 

hectare, contributes most to the total environmental losses. It contributes nearly half of all 

losses in our model. 

                                                 
5 All the life zones have a positive EL, due to our uniform positive 10% bias. 
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6 CONCLUSION 

We tentatively conclude that, if other countries are like Costa Rica, it might be 

costly for avoided deforestation to contribute as much to climate mitigation as some 

IPCC estimates suggest. We more confidently assert that land use baselines are extremely 

difficult to estimate and that the errors they create could have significant environmental 

impacts if the scale of avoided deforestation projects is large. We do not necessarily 

believe that this means we should not include avoided deforestation in Kyoto or a similar 

agreement, just that relying on project mechanisms that require baseline estimates might 

not be a good idea. Estimating baselines for any economic activity is extremely hard and 

possibly baselines should be set once and for all for large geographic areas, regions or 

countries, as they are for developed countries, through negotiation. Analyses such as 

ours, which attempts to predict deforestation, can be useful inputs to these negotiations. 

Although ecological uncertainty appears to be on a smaller scale than land use 

uncertainty, we find that it could be very significant if carbon prices are high or if the true 

carbon bias is higher than we assume. Also, while baseline uncertainty disappears in an 

agreement with fixed targets, ecological uncertainty cannot be completely avoided 

through policy design.  

Appropriate targeting of future ecological research aimed at reducing uncertainty 

should take into account the relative areas of different types of forest, the level of threat 

those forests face (or the potential for reforestation if this is the interest), and the existing 

level of ecological uncertainty. We find that in the case of Costa Rica, this suggests 

further effort in the tropical wet life zone. Of course, the likely progress in the research 
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should also be taken into account in setting priorities. It may be easier to reduce 

uncertainty in relatively understudied ecosystems.  

We believe that three areas provide the most potential for reducing the error in 

carbon stock estimation over large areas. The first area is the allometric equations used to 

calculate carbon stock from tree characteristics. These should be verified for a specific 

area, improved if necessary, and applied to only similar environmental and stand 

conditions. Correct application of these equations requires a reasonable stratification of 

the area of interest using one or multiple environmental features (Macdicken, 1997; 

Kauffman et al, 2002). To ensure that a general allometric equation is not biased for a 

specific stratum, verification of the equation might be needed in a given area by sampling 

and weighing some trees, especially large ones (Brown et al, 2000), growing in the full 

range of conditions within the stratum. 

The second area that might reduce the error in carbon stock estimates significantly 

is the installation of field plots. Various options exist for sampling design (Macdicken, 

1997; Smith, 2002; Brown et al, 2000). To avoid subjectivity, the locations of field plots 

should be predetermined before going to the field according to land cover maps. 

Deploying plots along features such as roads should be avoided to minimize the 

introduction of potential errors.  

Finally, models, after calibration and validation, should be used to simulate 

carbon dynamics in space and time, especially when the study area is highly 

heterogeneous and the cost of establishing many permanent plots for measuring and 

monitoring carbon changes is prohibitive. Validated models are very useful for exploring 
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carbon sequestration potentials under various physical, social, economic, and policy 

scenarios. Well-established plot-scale models have been extensively used for scaling up 

carbon dynamics from sites to regions by incorporating detailed spatially-explicit 

information on climate, soil and land cover and land use change (Liu and Schimel, 2004). 

However, the applicability of ecosystem models to supporting the establishment of 

carbon sequestration projects has not been rigorously evaluated so far. Given that many 

carbon sequestration projects have been set up almost solely relying on field 

measurements of carbon change on permanent plots, an add-on evaluation of some 

models on characterizing carbon dynamics would be useful. If successful, the overhead 

cost for setting up carbon sequestration projects could be reduced and more management 

options could be explored using modeling approaches before implementation (Kerr et al, 

2003).  

Research cannot reduce within-life-zone variability but it does help us understand 

the spatial variability of carbon stocks. If the variability is very large in life zones that 

create a lot of environmental losses, it might be worth targeting carbon rewards more 

accurately by having different rewards within life zones. For example, if life zones can be 

further stratified by topography, and this stratification reduces within-stratum uncertainty, 

carbon rewards could vary by life zone and topography.  

Our analysis has looked at one small country, only at avoided deforestation and only 

at the environmental losses from one potential policy. We have also considered only 

aboveground biomass and one characterization of the landscape. We believe future 

research could productively extend this research using either our model or similar ones to 
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explore: the robustness of the results; the effects of uncertainty on reforestation; and the 

impacts of changing policy design—for example, increasing the accuracy of rewards but 

also increasing the costs of measuring carbon—and incorporating belowground biomass 

and different characterizations of landscape. This potential research stream would help 

the global community take optimal advantage of the biological mitigation opportunities 

in tropical forests without creating unacceptable global environmental risks.  
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Figure 1: The integrated model 
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Figure 2: Forecast carbon stocks with and without a carbon price 
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Figure 3: The supply curve for additional carbon for period 1986–

1997
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Table 1: Carbon density in aboveground biomass (tC ha-1) by life zone as estimated by the GEMS model and field 
measurements.  

Life zone GEMS   Data From Literature             Overall literature 

 (1a) 

Mean 

(1b) 

Std dev 
as % of 
mean 

(2) 

Brown 
(1997) 

(3) 

Brown 
and 
Lugo 
(1982) 

(4) 

Helmer 
and 
Brown 
(1998) 

(5) 

Brown 
et al 
(1989) 

(6) 

Delaney 
et al 
(1997) 

(7) 

Fehse 
et al 
(2002) 

(8) 

Tosi** 
(1997) 

(9) 

MINAE 
(1997) 

(10) 

DeAngelis 
et al 
(1981) 

(11) 

Mean 

(12) 

Std dev 
as % of 
mean 

(13) 

Premontane moist  135 47    104    122 70 42 95 40 

Lower montane moist  250 38    159  173  85 289   191 42 

Tropical moist 112 21 147 139 259 187 179 166 169 117 97 157 30 

Premontane wet  149 28    153    133 111 66 122 29 

Lower montane wet  222 40    210    86 174 183 175 31 

Montane wet 258 42      157 134 47 154   150 50 

Tropical wet 204 35 82 129 182   264 178 138 100 160 37 

Tropical dry 63 17 39 110 51* 55 70  78 34 57 63 38 

Premontane rain  187 47 87  159    91 94 92 118 37 

Lower montane rain  208 34    162    56  124 138 47 

Montane rain 228 37     154       32 139 88 128 57 
* This is the average of the range provided by Helmer and Brown (1998) of 7–94 tonnes of C/ha. 
** Derived from Tosi (1997) by Shuguang Liu. 
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Table 2: Observable variables and regression results 

Estimated coefficient  Effect Explanatory variable Non-
norm-
alized 
mean 

All  1986–
1997  

excl. 

1997–2000

excl. 

   I II III 

Land parcel productivity 
and international prices

Agricultural returns per hectare 
(US1997$1000/ha) 0.6 

0.065*  

(0.023) 

–0.15* 

(0.05) 

0.052* 

(0.027) 

Minimum distance to market 
(100km) 0.7 

–2.0*  

(0.1) 

–2.4*  

(0.1) 

–2.2* 

(0.1) 

Minimum distance to market  

Accessibility 

× time 
4.8 

0.029*  

(0.002) 

0.039*  

(0.002) 

0.033* 

(0.002) 

Local development Percentage cleared 
0.2 

1.9*  

(0.1) 

1.9*  

(0.2) 

2.0* 

(0.2) 

Limited quality land Percentage cleared ^2 

0.04 

0.16  

(0.29) 

0.5  

(1.4) 

–0.03* 

(0.3) 

Time dummy (1900–1963) – Omitted 

Time dummy (1963–1979) – –0.44*  

(0.08) 

–0.7* 

(0.1) 

–0.58* 

(0.09) 

Time dummy (1986–1997) – –2.4*  

(0.1) Dropped 

–2.6* 

(0.1) 

National development 

Time dummy (1997–2000) – –3.5*  

(0.1) 

–3.7* 

(0.2) Dropped 

  Constant – –2.7*  

(0.1) 

–2.6* 

(0.08) 

–2.6* 

(0.07) 

  R-squared   37%  36% 37% 

  N   3966 3056 3033 
* Significant with 99% confidence. 
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Table 3: Environmental losses, carbon credits created, and total additional carbon 
as % of baseline carbon loss 

A B C Scenarios 

1997–20006   Cross-section 

1997–2000, one 
10% sample7  

1986–19978  

Environmental losses (EL) 39.9 5.01 –31.68 

Broken down using Equation (9) 

 Carbon credits created  41.1 6.23 –30.48 

 Total additional carbon  1.20 1.22 1.20 

 

                                                 
6 This is the simulated EL in year 2000 after three years of a $1 carbon reward. To estimate the supply that 
would have occurred with a reward during the 1999 period, we simulate deforestation in-sample based on a 
regression model estimated using data from all periods (1932, 1971, 1992, and 1999; we omit 1982 because 
of spurious returns data from that period). Our development curve is constrained to equal the 1999 
dummy—an approximation of development in that period.   

Our baseline predictions for this period are based on out-of-sample simulations, with our regression 
equation estimated off the 1933, 1972 and 1993 periods and with our development curve constrained to 
equal the 1992 time dummy coefficient—a prediction of development in that period. We produce predictive 
distributions by randomly varying the regression coefficient for farm-gate returns and coefficients of the 
development curve. We compare our baseline predictions with “actual” baselines (in-sample baseline 
estimations, which approximately equal actual measurements). 

We estimated our regression model using a dataset that at each point in time includes any parcel of land 
that was forested. However, we only include land parcels that were in forest in the beginning of the 
simulation period for comparing our simulations out-of-sample, as our model only predicts deforestation, 
not reforestation. 
7 This is the EL for 2000 for a 10% sample of district-life zones. We calculate it as described in note 6, 
except we predict out-of-sample for only 10% of the life zones (the regression equation is estimated using 
the other 90%). 
8 This is the EL in 1997 after 11 years of a $1 carbon reward. We calculate it as described in note 6  except 
we predict out-of-sample for the 1992 period, the in-sample development curve constrained to equal the 
1992 time dummy coefficient, and the out-of-sample development curve constrained to equal the 1972 time 
dummy coefficient. 
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Table 4: EL decomposition (using Equation (10)) 

Scenarios A B C 

  1997–20009   1997–2000, one 10% 
sample10  

1986–199711  

 Mean % of EL Mean % of 
baseline loss Mean % of EL Mean % of 

baseline loss Mean % of EL Mean % of 
baseline loss 

“Wrong” supply  
   carbon error  0.8 0.3 5.7 0.3 0.9 0.30 
Baseline error  91.9 36.7 87.8 4.4 –93.1 –29.5 
Error interaction 7.3 2.9 6.4 0.3 –7.8 –2.5 

 100 36.7 100 5.01 –100 –31.68 

 

 

                                                 
9 This is the EL for 2000, based on a simulation run forward from 1997. See note 6 for details. 
10 This is the EL for 2000 for a 10% sample of district-life zones. See note 7 for details. 
11 This is the EL for 1997, based on a simulation run forward from 1986. See note 8 for details.  

×
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Table 5: Effects of errors on environmental losses by life zone (1997–2000)  

Life zone Carbon standard 
deviation as % of 
mean carbon* 

% 1997 CR 
forest 

 haper  EL average
 lifezone inforest 

 of haper  EL

 

EL from life 
zone as % of 
total EL 

(1) (2) (3) (4) (5) 

Premontane moist 
forest 51% 5.8% 1.3 7.5% 

Lower montane 
moist forest 42% 0.2% 2.7 0.6% 

Tropical moist 46% 17.1% 0.5 8.4% 

Premontane wet 
forest 35% 19.1% 0.8 14.9% 

Lower montane wet 
forest 37% 2.8% 1.0 2.9% 

Montane wet forest 46% 0.04% 1.8 0.1% 

Tropical wet 36% 31.0% 1.3 41.8% 

Tropical dry 46% 2.6% 0.2 0.5% 

Premontane rain 
forest 33% 10.4% 0.7 7.6% 

Lower montane rain 
forest 47% 8.3% 1.3 10.4% 

Montane rain forest 54% 2.6% 2.0 5.3% 

   100.0%   100.0% 
*This was estimated with both within-GEMS and between-literature-mean-estimates standard deviations being perturbed. 
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A. FITTING THE DEVELOPMENT CURVE 

We first take the mean coefficients of our four time dummies, tδ , and transform 

them into their hazard form: 

1+
=

t

t

e
eht δ

δ
 (11)

These are the hazard of deforestation for each time-period on a land parcel when 

all spatial variation has been controlled for; we show these and the actual deforestation 

rate in Figure A.1 below.12 To fit a curve to these points, we must first decide on an 

appropriate functional form. The four data points in the figure are consistent with the 

shape of a stretched reverse-S, with two periods of relatively stable deforestation rates 

connected by a short sharp change period. This shift could be thought of as the country 

moving from an undeveloped phase into a developed phase. Because of this shape, and 

the need to have degrees of freedom greater than zero, we choose a double exponential 

function to fit the points.13 We fit the function to the vector, ht, (shown by the black line 

in Figure A.1) and then transform tĥ  back to tδ̂ .14  

                                                 
12 The deforestation rates are annualized rates, plotted at the midpoints of the periods 1899–1963, 1964–
1979, 1986–1997, and 1998–2000 (1932, 1971, 1992, 1999). We omit 1979–1984 because of spurious 
returns data from that period. 
13 The function fitted is a double-exponential survival function. The double exponential hazard is given by:  
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Figure A.1: Deforestation rate and development curve 
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where t is time, and p1, p2, and p3 are the function parameters (p1 is the displacement of the development 
period, p2 the spread of the development period, and p3 the scale). We fit p1 and p2 using a quasi 

constraining p3 so that tĥ  is equal to the transformed mean coefficient, th , at the initial forecast period. 
That is:  
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14 The function to transform hazards into their log form is: 
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The fitted curve has a coefficient of determination, or R2, of 0.999. However, how 

well the curve fits national development is highly uncertain. There is no explicit 

theoretical basis for choosing this curve; we are only applying our theoretical 

expectations about the first and second derivatives of deforestation over time in Costa 

Rica to choose a functional form for extrapolation.  
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B. ESTIMATING SUPPLY 

To give us the best estimate of supply during the relevant period, we simulate 

forest supply, F(r c~ ), relative to actual baseline forest, F(0). We predict supply using an 

in-sample regression, constraining the development function to equal the time dummy 

that covers the period in which we are evaluating the EL. We then calculate our policy 

supply as usual. This method eliminates error in our supply due to incorrect baseline 

estimates, leaving only the error in estimating land-use choice with a reward.  


